3.2505 \(\int \frac{1}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=115 \[ -\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{5 x+3}}+\frac{543 \sqrt{1-2 x}}{196 (3 x+2) \sqrt{5 x+3}}+\frac{3 \sqrt{1-2 x}}{14 (3 x+2)^2 \sqrt{5 x+3}}+\frac{56421 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{196 \sqrt{7}} \]

[Out]

(-90415*Sqrt[1 - 2*x])/(2156*Sqrt[3 + 5*x]) + (3*Sqrt[1 - 2*x])/(14*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (543*Sqrt[1 -
 2*x])/(196*(2 + 3*x)*Sqrt[3 + 5*x]) + (56421*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(196*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.036646, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {103, 151, 152, 12, 93, 204} \[ -\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{5 x+3}}+\frac{543 \sqrt{1-2 x}}{196 (3 x+2) \sqrt{5 x+3}}+\frac{3 \sqrt{1-2 x}}{14 (3 x+2)^2 \sqrt{5 x+3}}+\frac{56421 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{196 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)^(3/2)),x]

[Out]

(-90415*Sqrt[1 - 2*x])/(2156*Sqrt[3 + 5*x]) + (3*Sqrt[1 - 2*x])/(14*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (543*Sqrt[1 -
 2*x])/(196*(2 + 3*x)*Sqrt[3 + 5*x]) + (56421*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(196*Sqrt[7])

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx &=\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{1}{14} \int \frac{\frac{101}{2}-60 x}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}} \, dx\\ &=\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{543 \sqrt{1-2 x}}{196 (2+3 x) \sqrt{3+5 x}}+\frac{1}{98} \int \frac{\frac{11567}{4}-2715 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{3+5 x}}+\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{543 \sqrt{1-2 x}}{196 (2+3 x) \sqrt{3+5 x}}-\frac{1}{539} \int \frac{620631}{8 \sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{3+5 x}}+\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{543 \sqrt{1-2 x}}{196 (2+3 x) \sqrt{3+5 x}}-\frac{56421}{392} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{3+5 x}}+\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{543 \sqrt{1-2 x}}{196 (2+3 x) \sqrt{3+5 x}}-\frac{56421}{196} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=-\frac{90415 \sqrt{1-2 x}}{2156 \sqrt{3+5 x}}+\frac{3 \sqrt{1-2 x}}{14 (2+3 x)^2 \sqrt{3+5 x}}+\frac{543 \sqrt{1-2 x}}{196 (2+3 x) \sqrt{3+5 x}}+\frac{56421 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{196 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.048376, size = 74, normalized size = 0.64 \[ \frac{620631 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )-\frac{7 \sqrt{1-2 x} \left (813735 x^2+1067061 x+349252\right )}{(3 x+2)^2 \sqrt{5 x+3}}}{15092} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)^(3/2)),x]

[Out]

((-7*Sqrt[1 - 2*x]*(349252 + 1067061*x + 813735*x^2))/((2 + 3*x)^2*Sqrt[3 + 5*x]) + 620631*Sqrt[7]*ArcTan[Sqrt
[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/15092

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 202, normalized size = 1.8 \begin{align*} -{\frac{1}{30184\, \left ( 2+3\,x \right ) ^{2}} \left ( 27928395\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+53994897\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+34755336\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+11392290\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+7447572\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +14938854\,x\sqrt{-10\,{x}^{2}-x+3}+4889528\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}{\frac{1}{\sqrt{3+5\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x)

[Out]

-1/30184*(27928395*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+53994897*7^(1/2)*arctan(1/14
*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+34755336*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2)
)*x+11392290*x^2*(-10*x^2-x+3)^(1/2)+7447572*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+149388
54*x*(-10*x^2-x+3)^(1/2)+4889528*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)^2/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2
)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (5 \, x + 3\right )}^{\frac{3}{2}}{\left (3 \, x + 2\right )}^{3} \sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((5*x + 3)^(3/2)*(3*x + 2)^3*sqrt(-2*x + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.51496, size = 315, normalized size = 2.74 \begin{align*} \frac{620631 \, \sqrt{7}{\left (45 \, x^{3} + 87 \, x^{2} + 56 \, x + 12\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (813735 \, x^{2} + 1067061 \, x + 349252\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{30184 \,{\left (45 \, x^{3} + 87 \, x^{2} + 56 \, x + 12\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/30184*(620631*sqrt(7)*(45*x^3 + 87*x^2 + 56*x + 12)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x
+ 1)/(10*x^2 + x - 3)) - 14*(813735*x^2 + 1067061*x + 349252)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(45*x^3 + 87*x^2 +
 56*x + 12)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)**3/(3+5*x)**(3/2)/(1-2*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [B]  time = 1.94316, size = 427, normalized size = 3.71 \begin{align*} -\frac{56421}{27440} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{25}{22} \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )} - \frac{297 \,{\left (107 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 23800 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{98 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

-56421/27440*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 25/22*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(
22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 297/98*(107*sqrt(10)*((sqrt(2)*sq
rt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 23800*sqrt
(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)
)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)
))^2 + 280)^2